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Abstract. We provide a physical interpretation for the Lagrange multipliers associated with 
heat conduction in an information-theoretical description of non-equilibrium systems. Such 
an identification is based on the generalised Gibbs equation of extended irreversible 
thermodynamics. 

1. Introduction 

The statistical description of non-equilibrium steady states is one of the central aims 
of non-equilibrium statistical mechanics. Information theory has been applied to such 
a problem (Levine and Tribus 1979) in order to define non-equilibrium ensembles 
similar to the Gibbsian ensembles used in equilbrium statistical mechanics (Zubarev 
1974). Such ensembles could be clarifying in some aspects ofthe definition of nonequili- 
brium entropies or in the analysis of statistical aspects of non-equilibrium fluctuations 
near steady states, which are open problems in non-equilibrium thermodynamics. 

Assume a system of N particles with fixed mean energy U and mean heat flux Q. 
For the description of this system, and in analogy with equilibrium statistical mechanics, 
the information-theoretical approach leads to a partition function of the form 

Z=(h3”!)-’ d T e x p ( - P H - y . J )  (1 .1)  5 
where h is Planck’s constant, dT is the volume differential in the phase space of the 
system, H is the Hamiltonian and J the microscopic heat flux operator, and j3 and y 
are Lagrange multipliers. The latter ones are determined by the conditions imposed 
by the information we have on the system, which are expressed by the equations 

(1.2) U = (H) = -a In Zlap and Q = ( J )  = -a In Z l a y .  

The information-theoretical formulation has been applied to an ideal gas transporting 
energy but not mass, by Corbet and Morowitz (1972), Corbet (1974) and Nisbet and 
Gurney (1974). Furthermore, heat flow in a linear harmonic chain has been analysed 
on this basis by Miller and Larson (1979). However, these works, based on specific 
microscopic models, provide a computation but not a physical interpretation for y. 
Such an interpretation is the main aim of this paper. Indeed, it would be desirable to 
have such a physical interpretation for y in some general conditions without any 
recourse to microscopic calculations. In this way, all Lagrange multipliers appearing 
in (1.1) would be treated on the same footing and could be assigned a macroscopic 
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meaning. The problem here has been the lack of a generalised Gibbs equation 
applicable to this situation. 

Our purpose is not only to translate into non-equilibrium the symmetry with which 
Lagrange multipliers are considered in equilibrium grand canonical ensemble, but it 
has also a practical point of view. Without a physical interpretation of the Lagrange 
multipliers, information theory does not lead to any expressions for dissipative 
coefficients. In contrast, an identification of such multipliers increases the potentiality 
of information theory with the possibility of computing dissipative coefficients, provided 
the relaxation times of the corresponding fluxes are known. 

In 0 2, we present our identification of the Lagrange multipliers of the generalised 
partition function. In 0 3 we compare our identification with other alternative pro- 
cedures for identifying the multipliers. In § 4 we apply this formalism to the computa- 
tion of non-equilibrium equations of state and the pair-correlation function. 

2. Identification of Lagrange multipliers 

The identification of the Lagrange multipliers in (1.1) is carried out by comparison 
with the macroscopic expression for the generalised Gibbs equation usual in extended 
irreversible thermodynamics (Nettleton 1960, Muller 1967, Lebon 1978, Casas-Vizquez 
er a1 1984). Such a theory includes the dissipative fluxes amongst the set of independent 
thermodynamic variables and, therefore, it considers a generalised entropy which 
depends on both classi.ca1 variables and dissipative fluxes. In our case we consider U 
and Q as independent variables and the corresponding Gibbs equation takes the form 
(Casas-Vizquez and Jou 1981) 

d S =  T- 'dU-(T/AT*V)Q*dQ. (2.1) 

Here A is the thermal conductivity, V the volume and T the relaxation time of the heat 
flux, as given by the Maxwell-Cattaneo equation 

TQ + Q =  - A W T  (2.2) 

In fact, T is not strictly the local-equilibrium absolute temperature, but has some 
second-order corrections in Q2, which are of the form (Casas-Vizquez and Jou 1981) 

T-I = TLi -;[a( T / A  T2 V)/a U]Q2 (2.3) 

where 'Teq is the local-equilibrium absolute temperature. We omit here these corrections 
for a greater transparency of the development. 

We may work in analogy with equilibrium statistical mechanics. When the mean 
energy U and the mean number of particles N are specified, the most probable 
distribution function is of the form 

f- exp(-PH - a") (2.4) 
with N' the microscopic particle-number operator, and P and a Lagrange multipliers. 
This is the grand canonical distribution function. The Gibbs equation is in this case 
the classical one 

d S =  T-' d U - p T - ' d N  (2.5) 
with p the chemical potential. Through a standard procedure, one arrives at the 
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following identification of the Lagrange multipliers 

p = l / k T  and a = - p /  kT. (2.6) 

In our case, the most probable distribution function is, according to information 
theory and corresponding to ( l . l ) ,  

f - e x p ( - p H - y - J )  (2.7) 

while instead of (2.5) we have the generalised Gibbs equation (2.1). A parallel 
procedure leads to 

p = l / k T  and y = - T Q /  kAT2 V.  (2.8) 

While the process leading from (2.5) to (2.6) is classical and well known, the one 
leading to (2.8) is conceptually more problematic, because it deals with the newer and 
still open problems of non-equilibrium thermodynamic potentials. 

In equilibrium statistical mechanics, the second derivatives of In 2 are linked to 
the fluctuations of U and N. A similar situation is found in our development, where 
we obtain 

(6U2)  = a2 In Z/ap2 = kT2C 

( So2) = a2 In Z/ay2 = kA T2 V /  T 
(2.9) 

where C is the thermal capacity of the system. The first expression is the classical one 
while the second is a particular form of the fluctuation-dissipation theorem. 

In this section we have provided an interpretation of the Lagrange multipliers p 
and y in a way independent of any microscopic model. This identification is limited 
to a local description of systems not too far from equilibrium and satisfying Maxwell- 
Cattaneo laws. This loss of generality as compared with the equilibrium situation is 
not at all surprising, since dynamics offers a much greater diversity than just equilibrium 
and it is more involved to deal with. 

3. Comparison with some previous results 

The aim of this section is to compare our formalism with previous works in order to 
provide more elements of plausibility for the present results. Since the identification 
(2.8) is independent of any microscopic models, we shall be able to compare with 
previously known results in kinetic theory of gases and in information-theoretical 
approaches to heat flux in harmonic chains. These results confirm our identification, 
and provide an alternative method to obtain it, at least in the domain of validity of the 
generalised Gibbs equation. 

It is usually convenient to start the analysis of non-equilibrium phenomena in dilute 
gases from the relaxation-time approximation to the Boltzmann equation for the 
one-particle distribution function f( r, U, t )  per unit volume in the absence of external 
forces 

( a / a t  +U. V)f= - T - ' ( f - & )  (3.1) 
where 7 is the relaxation of time off and fes is the local-equilibrium distribution. One 
gets for the non-equilibrium distribution function in the steady state, up to first order 
in T, 

f = f e J I  +(T/kT2A)Q(U) * Qol. (3.2) 
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Here, q (  u )  = ;( mu2 - 5 kT)o is the heat-flux microscopic operator for one particle, 
whereas qo = -AV T is the steady mean heat flux as given by Fourier’s law. It may be 
seen that (3.2) is a special case of (2.7) because for a dilute gas both the Hamiltonian 
and the total heat flux are merely additive quantities and therefore the total distribution 
function is the product of the distribution functions of the particles. If the mean heat 
flux qo is small in such a way that exp(-y. q )  i= 1 - y -  q, we recover (3.2) fwm (2.7). 

Note that this provides an alternative procedure of identifying y, by developing 
the exponential up to first order in y and comparing with the kinetic expression (3.2). 
This leads of course to the same results. The difference between both procedures is 
that ours starts from the generalised Gibbs equation and arrives at (3.2) as a con- 
sequence. In the alternative method, (3.2) would be the starting point and the gen- 
eralised Gibbs equation a derived result. This duality of possibilities is also known in 
equilibrium statistical mechanics, where the multipliers p and a can be identified both 
from the Gibbs equation or from the thermodynamic expressions for ideal gases. The 
first procedure seems to us more elegant than the second one. 

As an illustration of the practical advantage of our interpretation over previous 
formulations of this problem, we may compare our development with that of Nisbet 
and Gurney (1974). These authors have obtained for the Lagrange multiplier y in the 
case of a dilute gas y = -(2m/5pk3T3)Q, where p is the particle number density. This 
is as far as a computation of y may lead. However, if we dispose of our interpretation 
(2.8) for y we may identify (T/kAT2) = (2m/5pk3T3), since we are working per unit 
volume. As a consequence we obtain for the thermal conductivity A = $( k2 T/ m ) p T ,  in 
accordance to the results of kinetic theory. Without the physical interpretation of y 
this result would not be obtainable. 

Furthermore, we compare our results with those of Miller and Larson (1979) for 
heat flow in a closed linear harmonic chain of N oscillators. This chain is isotopic 
to 4N two-dimensional oscillators. In such a. case, Miller and Larson obtain for p and 
Y 

p =( l /E ) ( l  +x2)(1-x2)-l and y = -Np2x( 1 +x2)-’ (3.3) 

with E the average energy per particle E = E/  N and x the relative heat flux x = Q/ E. 

Here, mass, time and energy are suitably normalised so that phonon velocity is taken 
as unity. Since there is no interaction between modes, there are no collisions between 
phonons so that both r and A diverge. However, we may obtain a value for the ratio 
r / A  from the well known expression (two dimensions) A =fc2Cr.  In this case c(phonon 
velocity) is unity and C(specific heat per unit length) is equal to k (Boltzmann’s 
constant), so that T / A  = 2 / k  Neglecting second-order terms, this result agrees with 
(2.8). Note that if an anharmonic term is included in the Miller-Larson formalism, 
their analysis becomes very involved. However, to a first approximation, our model 
predicts that the final result will be the same, with the only difference of both T and 
A being finite in this case. 

4. Non-equilibrium equations of state and pair-correlation function 

The partition function (1.1) may be used to compute non-equilibrium equations of 
state for the generalised entropy and pressure. Here, we analyse briefly the latter 
equation, which provides a basis for some of our previous work (Jou and Perez-Garcia 
1983). In particular, one may use the perturbative methods of the theory of non-ideal 
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equilibrium systems (McQuarrie 1976) by considering the dissipative part - y  J as a 
perturbation to the equilibrium Hamiltonian. In this way, one may develop 

z = z(eq)(exp(-y.  J ) )  = Z(eq)[l - ( y  J )  +fy2(J2)I .  (4.1) 

Here ( ) means the equilibrium average, so that ( y  * J ) )  = 0 and (5’) = kAT2V/T, 
according to (2.9). Furthermore, Z(eq) stands for the equilibrium partition function. 

In this way, we obtain a second-order development for the partition function 
Z(p ,  y ) .  From here, one could define a generalised free energy F ( P ,  y )  as F =  
- P - ’  In 2. However, in order to compare with our previous work it is preferable to 
have Q instead of y as independent variable. As in classical thermodynamics, such 
a change of variables is suitably carried out by means of a Legendre transformation 
(Callen 1960) of the form F’(P, Q) = F ( P ,  y )  + y  Q, which leads to 

W P ,  Q) = FJP) + % 7 / A W Q 2 .  (4.2) 

The latter expression for the free energy may be used to obtain the equation of state 
for the pressure, defined as p = -(aF’/aV)To. We are led to 

p = p e , + ~ k T [ a ( ~ / k A T 2 V ) Q 2 / a V ]  (4.3) 

where pes is the local-equilibrium pressure. An equation of this kind has been used 
(Jou and PCrez-Garcia 1983) with a Van der Waals expression for pes as an illustration 
to evaluate the modifications on the crucial point of a fluid in the presence of a heat 
flux. 

A physical explanation of these non-equilibrium modifications of the equations of 
state is the distortion produced in the pair-correlation function by the presence of a 
heat flux. As a consequence, the analysis of such a function is of interest from both 
the theoretical and the experimental points of view. The distortion induced by a shear 
has been studied by Hess (1980), Hess and Hanley (1982) and Evan and Watts (1980), 
either from molecular dynamics or from the Smoluchowsky equation. Here we take 
a different approach, based on the partition function ( l . l ) ,  to illustrate a possible field 
of application of the present formalism. 

As in equilibrium statistical mechanics, we define the pair-correlation function g(  r) 
as 

g ( r ) =  V2N![N2(N-2)!z]-’  e x p ( - P H - y - J ) d r  ,... dr, dpl ... dp,. (4.4) 5 
In the classical expression the dissipative term is lacking because y = 0. 

The microscopic operator for J is in general (Resibois and De Leener 1977) 
N 

J = c {(tmDf + ; d r y )  - W U ,  - U, [;aso(r,,)/ar,lr, (4.5) 
I = ’  

where h’ is the enthalpy per unit volume and cp(r,) is the interaction potential between 
particles i and j .  According to (4.4) one gets, up to second order in Q, 

g(r, y)=g, , (r)[ l -  k A T 2 V ~ - 1 y 2 ] + ( V / N ) 2 ( 3 k T / m ) A y 2  (4.6) 
with A = ($[cp2-2pr. acp/dr+2r2(acp/dr)2](j exp(-Pcp) dr)-’. In the work of Evans 
and Watts, based on molecular dynamics, the development of the pair-correlation 
function in terms of the shear rate is non-analytic. In this case, the relaxation time T 

would be a non-analytic function of Q2 (PCrez-Garcia and Jou 1982,1983), but we do not 
deal with this case here. 
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5. Concluding remarks 

The present ideas being macroscopic, and therefore rather general, may be applied 
not only to heat conduction but also to other kinds of dissipative processes. In the 
case of viscous and heat conducting fluids, the generalised Gibbs equation reads as 
(Jou and Casas-VBzquez 1980) 

d S  = dS,, - ( T,/AT' V )  Q * d Q  - ( T2/277V)Pv dP' (5.1) 

where Se, stands for the classical local-equilibrium entropy, A and 7 are thermal 
conductivity and shear viscosity, respectively, P' is the viscous pressure tensor and 7, and 
T~ are the respective relaxation times of Q and P'. Neglecting here heat conduction, which 
has been studied in the preceding sections, it is seen that a partition function analogous to 
( 1  . l )  may be obtained with the replacement of J by II, the microscopic operator for the 
viscouspressuretensor,andof-(TlQ/AT2V) by-(T2P'/27TV). Oneisledinthis wayto 

dT exp[-PH +(~~/2k77TV)P' * II]. (5.2) 

In dealing with electrical conductors, the corresponding generalised Gibbs equation 
is (Jou and Llebot 1980) 

d S  = dS,, - ( T/uTV)Z. d l  (5.3) 

where I is the electric current integrated over the volume V, U the electrical conductivity 
and T the relaxation time of Z. We have in this case 

Z = (h3"!)-' dT exp[-PH +(~/kaTV)z. J,] I (5.4) 

Our treatment is limited to systems described by linear constitutive equations of the 
Maxwell-Cattaneo kind. Therefore, it is is not possible to carry out an indiscriminate 
higher-order development of the distribution function, which is only valid up to 
second order in the fluxes, because this is the limit of validity of the starting Gibbs 
equation. Though the importance of these limitations, this model has the advantage 
of giving a general macroscopic interpretation of the Lagrange multipliers appearing 
in information theory and it strongly underlines the interconnection between the 
macroscopic generalised entropy and the microscopic developments based on informa- 
tion theory. 
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